Mosaicism between trophectoderm and inner cell mass.

Capalbo A., Rienzi L.

Fertil Steril. 2017 May;107(5):1098-1106. doi: 10.1016/j.fertnstert.2017.03.023. Epub 2017 Apr 19.


Defining the actual incidence and prevalence of mosaicism in human blastocysts still remains a difficult task. The small amount of evidence generated by animal and human studies does not support the existence of mechanisms involved in developmental arrest, clonal depletion, or aneuploidy rescue for abnormal cells in euploid/aneuploid embryos during preimplantation development. However, studies in humans are mainly descriptive and lack functional evidence. Understanding the biological mechanisms that beset preimplantation differentiation holds the potential to reveal the role of aneuploidies and gene dosage imbalances in cell fate decision, providing important clues on the origin and evolution of embryonic mosaicism. The evidence on human blastocysts suggests that a mosaic euploid/aneuploid configuration is detected in around 5% of embryos. This figure supports the extremely low level of mosaicism reported in natural and IVF pregnancies. Similarly, the clinical management of patterns consistent with the presence of mosaicism in a trophectoderm biopsy during preimplantation genetic diagnosis cycles (PGD-A) is still a controversial issue. Despite the facts that some contemporary comprehensive chromosomal screening platforms can detect mosaic samples in cell mixture models with variable accuracy and many reproductive genetics laboratories are now routinely including embryonic mosaicism on their genetic reports, a diagnosis of certainty for mosaicism in PGD-A cycles is conceptually impracticable. Indeed, several technical and biological sources of errors clearly exist when trying to estimate mosaicism from a single trophectoderm biopsy in PGD-A cycles and must be understood to adequately guide patients during clinical care.